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COMPARISONS OF_METHODB OF COMPUTING BENDING
MOMENTS IN HELICOPTER ROTCR ELADES IN THE
PLANE OF FLAPPING
By John E. Duberg and Arthur -R. Luecker

SUMMARY

Several methods of computing bending moments in
helicopter rotor blades in the plane of flappling are
revlewed, and the results of & numerical example analyzed
by four dlfferent methods are comparesd. The effect on
computed bending moments of the tip-~loss correctlon
Introduced by Wheatley 1s alsoc considered.

The comperison indlcates that, from the standpoint
of accuracy of results end esse of applicatlion, the
method provosed by Clerva 1s the most sultable for routine
anelyses, The tip-loss correction 1s shown to have a
substantial effect on computed bending moments.

INTRODUCTION

The determinetlion of the bending stresses in rotor
blades during flight 1s one of the lmportant problems in
the streass analyslis of the structure of the hellcopter.
The problem is compllicated by the fact that the alr loads
and the 1nertias loads are continuously changlng as the
blades rotate ané that the bendling deflection of the
blades has an important effect on the momeénts developed
therein. The ansalysis can be simplified if the blades
are assumed rigid and therefore unable to bend, but under
this assumptlon the computed bendlng stresses superimposed
on the centrifugal-tension stresses are relatively high.
A more exact analysis, in which the relleving effects of
centrifugal tenslion on blade bending are included, glves
much lower values for these calculated bending stresses.

In the present paper comparlsons are made between
the varlous methods that h=sve been proposed for the
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calculatlion of the bkending stresses in the plane of
flepping. The effeet of introducing a correction for
tip loss, which has heretofore been ignored in stress
analyses, 1s also considered. A numerlical example 1s
analyzed by esch of the several methods to provide a
concrete baslis for the comparisons.

THEORY AND BASIC ASSUMPTIONS OF METHODS OF ANALYSIS

The basic rotor theory on which stress analyses of
rotor blades are based 1s that of Glauert, Lock, and

" Wheatley. (See references 1, 2, and 3, respectively.)

A conslderation of the forces acting on the rotor blade
during steady forward flight, as given by this theory,
indicates that the total bendlng moment at any radlal
station may be resoclved into the following three components:

(1) A component that 1s ldentical with the bending
moment 1n a rigld blade and 1s therefore
independent of blade bendlng

(2) A component, due to axlal tenslon, that depends
on the blade deflectlion and therefore varles
as the blade bends

(3) A component due to the inertla forces associated
wlth the varlation of the deflectlon with tlme

In the simplified theorles, in whlich the blade 1s assumed
static and rigld, the second and third components do not
occur, %hen flexlblllity ls taken into account so that

the sscond component 1s included, the problem is compli-
cated because of the lnteraction between the moments and
the blede deflsectlens. If the third component is lncludeg,
the problem is further complicated because the elastic
curve must satlisfy dynamlc as well as static conditions.

METHODS CF ANALYSIS

The methods of analysls for rotor-blade bending
moments in the-plane of flapping that are avallable in
the literature fall into three categorles as follows:

(1) "Exact" analyses in which inertia forces due to
rate of change of blade deflections, as well
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as the interaction between blade deflections
and moments,are considered

(2) Analyses, based on static loadings, that 1nc1ude
Interaction between blade bending and moments
but neglect lnertla forces due to blade-
bending deflections

(3) Simplifled analyses in which the bending moments
for the rigid blade are computed and approxi-
mate correctlons to account for the reduction
in the bendlng moment due to the axial load
are applled; the reductlon due to the axial
1oag has sometimes been called centrifugsl
relief

The analysis gilven in reference l 1s belleved to be
the only publlshed szect analysls and is based on the
rotor theory of references 1, 2, and 5. This theory has
been refined and extended in roference 3. In appendix A
of the present pewer, one of these reflnements - allowance
for the reductlon in 1ift near the blade tio - 1s intro-
duced into the analyslis of blade bending.

Most of the solutlons that have bsen presented 1n the
literature fell into the second category, in which the
problem treated 1s purely a static one. Thils approach
reduces the problem to that of a beam under comblned
bending and tension and, therefore, the methods developed
for such problems can be applied to the analysis of rotor-
blade moments. In reference 6, a solution of thils class,
which makes use of "type" solutlons to facilitate the
numerical calculations, 1s glven as & simplificatlion of
the analysis of reference lj. Two other methods of solving
the static problem are given in references 7 and 8. 1In
roeference 7 the solution 1s effected by means of the theo-
rem of thres moments generallzed to 1nclude the effect of
centrifugal tenslon. In reforence 8 the solution 1s
obtained by finding a deflected shape for the blade that
1s conslistent with a minimum of potential energy for the
system.,

The methods of the third category, whilch should have
more appeal for use in practical applications, provide
simpliflied formulas for obtalning the bending moments in
the blade by correcting the rigid-blade bendlng moments
for the relief caused by centrifugal tension. Clerva has
proposed a formula, given in reference 6, which states
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that the moment developed in the actual rotor blade 1is
equal to the product of the rigld-blade bending moment

and the perfectly flexible blade bending moment divided
by the sum of these two moments. The perfectly flexible
blade bending moment 1s a filctitious dending moment
obtalned by multiplying the stiffness of the actual blade
by the curvature of the perfectly flexlble blade. The
solutions for the rigld-blade bending moment and the
flexible-blade bending moment are gliven in appendix B.
Hohenemser in reference 9 has developed a method of com-
puting the blade bending moment by multlplylng the rigid-
blade moment by a correction factor, given herein in
appendix B, that depends on the blade radlus, blade
stiffness, and centrifugal force at the root. The formula
is developed on the basis of unliform distribution along
the length of the blade of both the blade mass and blade
bending stiffness. Reference 10 conteins a brief discus-
slon of Hohenemser'!s formula as well as the development

of formulas for the calculatlion of the rigld-blade bending
moments,

Although wind-tunnel and flight tests have proved
the basic rotor theory relisble when applied to the rotor
as a whole, the theory contains approximations that raise
some doubts as to the order of accuracy in computing air
forces at particular points In the rotor disk and, hence,
doubts as to the accuracy of bending moments computed by
any of the methods mentioned herein. These doubts can be
removed only by further tests 1ln which blade bending 1is
measured under operating conditions.

COMPARISON OF BENDING MOMENTS COMPUTED BY
DIFFERENT METHODS

In order to compare the bending moments obtalned by
the several methods of analysis, calculatlions were made
for a rotor with three blades, each having the following
physlcal properties:

Radius, feet L] [ ] L ] a . L] L ] e L ] L] [ ] [ ] [ ] L ] . a [ ] ® L] 12.5
Mass, Blug per foot e o = s % e e 8 ° ¢ » e e ® 000519
1l

Blade chord, Inches . . « ¢ o ¢« ¢ ¢ ¢ o s s o s o & 95

Bending stiffness, EI, pound-feet® . . . . . . . . 76&

0
Pitch setting (untwisted), degrees . . . « ¢« ¢« « » . 10
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The rotor was assumed to be rotatling at 370 rpm and to
have a forward veloclty of 100 miles per hour, which
corresponds to a tip-speed ratio p of 0.30. The ratio A
of axlel veloclty to tlp speed was essumed to be -0.079;
the negatlve sign 1ndicates flow downward through the
rotor disk.

The bending moments In the plane of flapping have
been computed for the rotor blade described 1n the
precedling paragraph by methods in each of the three
catagorles of analysis mentioned 1n the preceding sectlon.
The moments computed for four azimuth angles (Y} are pre-
sented in figure 1. Inspection of these moment diagrems
reveals that only a very small difference in computed
bending moment at any statlon exists between the values
glven by the exact method and this exact method modifiled
by neglecting the inertia forces due to blade bending.

The small magnltude of thls difference substantlates the
essumption, common to all approximate methods of analysls,
that these 1lnertia forcss are negligible,

The method of analysls proposed by Cierva, which 1s
given 1n detall in appendlx B, gives a maximum bending
moment for any azimuth engle that differs only slightly
from the meximum bending moment glven by the exact method
for the same azimuth angle. The moment dlagrams glven by
the Clerva method are 1ln close agreement with the moment
diagrams for the exact method except for the outer third
of the blade. In the outer third of the blade the bendlng
moments predlcted by the Clerva formula decrease to zero
less rapldly than those predicted by the exact method, but
this fact 1s of 1little consequence because 1n this part
of the blade the moments are less than the maximum moment.

The method of analysls proposed by Hohenemser gives,
a8 shown 1n figure 1, a bending moment dlagram at each
azimuth angle that differs appreciably from those given
by the other methods. The computed moment 1s higher in
the inner part of the blade and lower 1n the outer part
as compared wlth the moment computed by the exact method.
At an szimuth angle V¢ of 90°, where the maxirum bending
moment approaches 1ts smallest value, the Hohenemssr
method gives a maximum bending moment appreciably higher
than that glven by the exact method. At = 270°, where
the maximum bending moment approaches its largest valus,
the Hohenemssr method gives a maximum bending moment
appreclably smaller than that given by the exact method.
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The labor required to evaluate the bending stress
by the approximate methods of Clerva and Hohenemser 1s
only a small fraction of the labor required by the more
exact methods. Of these two approximate methods, that of
Clerva ls recommended for practlical stress analysis of
helicopter blades because the bending stresses obtalned
thereby are in good agreement with those given by the exact
method.

In figure 2 are shown the results obtained by the
exact analysis extended to include the effect of tip loss
by the method Introduced by Wheatley (reference 3). The
tlp-loss factor was assumed to be 0.97, which means that
the outer 3 percent of the blade 1ls assumed to produce
no 1ift. The method of anelysis used assumes zero moment
at the 0.97 point and doss not consider bending between
this point and the tip. At all ezimuth angles, the
consideration of tlp loss reduces the maximum bending
moment conslderably and causes & reversal of bendling near
the tip. Because the assumption made concerning tip
effect 18 only a crude approximation of the actual 1lift
distributlon in thls reglon, the calculatcd moments near
the tip may be very much in error. The large reduction
In the bending moment near the center, however, 1s
significant.

The bendlng stresses at each station 1n the rotor
blades of a helicopter vary between a maxlimum and a
minimum with each revolutlon of the rotor. For the par-
ticular blade analyzed, which was assumed to be of all-
metal aluminum-alloy construction with a sectlion modulus
of 0.167 inch cubed and an effective cross-sectlonal aresa
of 0.56 square inch, the total stress, which includes the
centrifugal tension and the superposed bendlng stress,
varied between the limits shown 1n figure 3 for the upper
and lower flbers at the different statlons along the
blade. Figure 3 1s based on the results of the exact
bending-moment analysls, neglecting tip loss.

CONCLUSIONS

A comparlson was made of rotor blade bending-moments
obtained by several methods of analysis. The results for
the single numerical example studled 1ndicate that the
addltional accuracy obtalnable by the%exact"analysis, when
compared with the best of the approximate methods now in
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use, does not justify the extra labor involved in applying
the exact method.

Of the two approximate methods studled, that of Clerva
gives the best over-all agreement with the more exact
analysls and 1s well sulted for the determination of
stresses in blades. The method proposed by Hohenemser,
although easier to apply thean the Clerva method, 1s less
deslirable because 1t gives maximum bending moments that
may differ by as much as one-quarter from those computed
by the exact method.

Consideration of tip loss results in a substantlal
reduction in maximum bending moments and should recelve
further attention in future studies of methods of blade
stress analysls.

Langley Memorial Aeronsutlical Laborsatory
Natlonal Advisory Committee for Aeronautics
Langley Fleld, Va., Ju:
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APPENDIX A
EXACT METHOD OF CALCULATING ROTOR-BLADE BENDING MOMENTS
Differentlal Equation of Blade Bending

The basic assumptlons of the blade-bendlng sanalysis
referred to herein as the exact method are l1dentical with
those used in reference l; for the development of the dif-
ferential equatlion except that a correction 1s added to
include the effect of tip loss. The correction for tip
loss follows the method developed by Wheatley in refer-
ence 3 in which the air load on the outer few percent of
the blade 18 neglected.

Flgure I} shows the coordinate system used and the
nomenclature lnvolved 1n defining the deviation of the
flexible blade from the rigld blade. The symbols used 1n
the analysls are defined 1n appendix C. In filgure 5 are
shown the forces and moments acting on each blade element.
A conslderation of the equllibrium of the element 1n the
direction parallel to the longltudlnal axis of the blade
eand 1n the directlon normal to the blade ylelds the
followlng differentlial equation for the blade bending
deflections:

2 2
%'K(n i -X>—I+2m ?i”Y:Bthis-(n)

mB2R2 92 dt2 EI dr

If the blade mass 1s uniformly distributed frem hinge to
tip, the mass of the tip section, which 1s assumed to be
wlthout alr load, 1s

Q = mR(1 - B)
and the dlstance from the tlp mass to the hinge 1s

Rq = 2(1 + B)

If these relationshlips are substlituted in the second term
of the differcntlal equatlon some simplificatlon results
end the differential equation becomes

.‘iltE_K<1_x2>_Z+2Kx_Z+2K_Z BL'-Rh-d_S.
dx B2 dx 2 g2 EI dr
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If the tlp loas 1s neglected, B reduces to unlty
and the -differential equation reduces to that given in
reference l. ' S

Blade T.oadinrg

The term on the right-hand side of equation (Al)
renrosents the blade load gradient, which is assumed
to be the same as that on a rigld blade. The bldde
loadling can be avaluated by means of the rotor theory
glven 1n references 1 and 3. In the present analyslis the
blades are assumed to be bullt with constant chord and
without twlet and the effect of perlocdic twlst of the
blades 1s neglocted. The effect of both tyves of twist
can be consldered by the methods of references 2 and 3.

If the 1lnstantaneous flapping angle of the blades 1s
represented by the equation

f = 8ag - a1 cos ¥ - by sin V (A2)

the veloclty components causing aerodynamic forces on

the blades are
\

Up = xBRQ + pROQ sin
Up = ARQ - xBRQ(al gin ¢ - by cos \L') M 23)
-uRQ(ao - 21 ccs ¥ - by sin w)cos ¥
7
The load gradient 1s then given by
as 1
_ Er— = Ecpa(UTUP + BUTZ) - mBRQaaox - mg (AL)

Introduction of the relationships given 1n equa=
tions (A3) into equation (Alj), expanding, and neglecting
higher harmonice glves for the load gredient
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I
NAH

par202 {[932112 . 3( _2a m)x . _1_9u2 - _2..‘25._]

[-a132x2 + 28uBx + pM + ﬁu2a1] sin v

[blBZxZ - aguBx + &uzb]_] cos w} (A5)

Flappling Coefficients

The flapping coefficlents a,, &3, and by, which

define the blade motion glven in squation (A2), are deter-
mined from the conditlon that the moment at the flapplng
hinge 1s zero for all azimuth angles. The coefflclents
are:

a8y = Y I%GBE (B2 + p.2) EB37\.] ’)21
1l
8] = LHJ-U-J-BG + 5>"l > (A6)
3(2% - W)
. BuBso

7SR D) Y,

where
v = 1mp2R2
My g(QBR + 2mB2R>
I, = QERRq + -;'-mB3R3
y - cpsRd

I
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Solution of the Differentiasl Equation of Blade Bending

The method of solution of the differentiai- equatlion. .
follows that glven in reference l. The blade deflections
are assumed to be expresslible in the form

Yy=7p +J2 8in ¥ + 55 cos ¥ (AT)

in which y;, 75, and y; are functions of the dlstance

along the blede span. ~Substitution of equatlon (A7) and
(A5) in the dlffsrentiel equation (Al) yields ths following
differential eguations for the functlons yi1, ¥, and T3,

~ 2 6
ddL:n _ K[é . 2QR.q> _xz] Py1 L e cpaBtréR? [eazxa

ey Tax2 ax 2ET
_ 28om }_( __lmg
+ <}\ Y Bx + 3 \eu _—cpaR2£}2>] (a8)
tha EQEQ\ 2Y2 cpaﬁﬁt’f! 5.2
b " [1 iy ] * e - oy - T

+ 20uBx + (p.)\. + Ll. 2a1>] (A9)

dliys 20R a a opanRéQ?
(-3 A e

= BguBx + :'—l.p.e'b]] (a10)

The four boundary conditions that the funetlons yi, y2,
and Y3 mist sstisfy are : At the hinge the deflection
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and moment are zero, and at radlus BR the moment is zero
snd the shear 1s that required to maintaln equllibrium of
the tip mass Q. The last-mentloned boundary condition,
at x = 1.0, can be exnressed 1n the followling form:

ady; _ dny PR
A = == + BRRagy + —=§§
ax3 © 7 RgQ
d372 dyo
A——7> = % ~ Y2
d::? X
3
d'yz  dvs
A— £ = - o 73
axs dx
where
EI
A= ——
Q2 82R2R,

The differential equations for yi1, yo, and y

be solvad approximetely by the method of "collocation".
(See referencs L.} The method of collocation consiats
essentlslly of expressing the solutlon as a linear com-
bination of functions that satisfles the boundery condi-
tlons lndenendently of the value of the coefflclent
assoclated with each function. The combination of
functions 1s substituted into the differential equation,
and the ccefflclents are so adlusted that the resultant
expression satlisfles the differential equation at as
many points as there are functions.,

When the tlp effect 1s consldered the following
set of functlons can be used:

n_
- -Qmo A A AR P ER N T

x-l-LEi >+ 3

-[(p +1)(p + 2)A + 1]::
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n
Y2 = N CZP xp+2 - L_'l-_]'.xp'"B
=t p+3
i C3 xp+2 - P—-‘-—Exp"'%
& 7 p+3

If the tip effect 1s neglected, the form of the
solutlion for yy 18

I3

13

n
S 2 + 1

J1 = Cyx + > Clp xP+1l _ <2 xp+2 + p(p )
e P+ 2 (p +2)(p + 3)

The form of solutlon for ¥y, and V3 remains as
before.

Numerlcal Example

A numerlcal example 1s presented with tilp loss

neglected, for a blade with the followlng propertiles
end operating conditlons:

R = 12.5 feet

c = 9% inches

m = 0.0519 slug per foot

a = 5.73
EI = 76L0 pound-feets
{1 = 38.8 radlans per second
= 0.3%00
-0.079

= 10° = 0,175 radlan

]

= 0.002%30 slug per cublic foot

xp+€>
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If the tlip loss 1s neglected,
B=1.0and Q =0

Equations (A6) give the following values for the
flapping coefficlents:

8, = 0.077922
a; = 0.096963

b = 0.029827

The factors ¥ and X have the following values:
Y = 7.5385
E = 124.83

If six functions sare chossen for the solution to the
differential equation for 7y, the form of the equation 1s

yl = C]lx + 012 é} - x"" + '120'15) + 013 (xh' - -gxs + —é-xé)

+ C]J_l_ x? - %-l'xé + -;—2::7) + C15 <x6 - %0.1:7 + %g::s)

T . 2;8 + 159
+ G186 (x 21 + 127 (Al1l1)

When this funetion 1s substituted in the differential
equation (A8), the equation 1s sstisfied at the points
x =0, 0.2, 0.4, 0.6, 0.8, and 1.0 1if

€17 = ~0.171 foot Cy), = =0.919 foot
Ci12 = 0.133 foot Ci5 = 0.569 foot
Cy3 = 1.197 feet C14 = 0.503 foot
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Substitution of the coefficlents in equation (All)
ylelds

¥y = =0.171x + 0.133x3 + 1.064xt - 2.315x5 + 2.273x6
-0.748x7 -0.449x8 + 0.293x9

The corresponding bending moments are obtained by

differentiating twice and multiplying by E%, which gilves
R

My = 48.9(0.795x + 12.77x2 - L6.30x3 + 68.18xk

-31.40x5 - 25.17x6 + 21.12x7)

By a similar process the rasults for M» and M5 corre-
sponding to the deflections yo and yz are

= 48.9(5.16x - 42.19x2 + 136.1x3 - 239.9xl+
+ 232,325 - 109.2x5 + 17.8x7)
Mz = 48.9(0.333x + 1.32x2 - 5.08x3 + 5.93x
+1.59%5 - 9.18x6 + 5.09x7)

The general expression for the bendlng moments 1s
M=M + M s8in ¥ + M3 cos ¥

At a distance from the flapping hinge of x = 0.6 the
bending moment 1is

= 3.2 - 15.9 sin ¥ + 9.0 cos V¥
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The minimum bending moment at the station x = 0.6

occurs when V¥ = 120° and is
M=L43.2 - 13.8 - 1.5 = 2;.9 pound-feet

The maxlmum bending moment at the station x = 0.6
occurs when ¥ = 300° and is

M=143.2 +13.8 + 1.5 = 61.5 pound-feet
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APPENDIX B
APPROXTMATE METHODS OF GALGULATING ROTOR-
BLADE BENDING MOMENTS
Clerva Method

The Clerva formula for the bending moment in a
rotor blade, given in reference 6, 1is

Mx=M;
My + Mp

where M, 1s the moment in a rigid blade and My 1s a
fictitious moment obtained by multiplying the curvature

of a perfectly flexible blade by the actual blade bending
stiffness EI.

If the blade 1s assumed rigid and tip loss 1s
neglected, the rigid-blade bending moment obtained by

Integrating the moment of the load gradlent glven In
equation (AS5) is

Mp = é]:cpaRhﬂz [ecx +6 - éi%sx+(%eu2 - —6J§\)A1J
>Ax] Bin v

+ -alcx + 20puBx + <§h +

in which .\\

Ax=£ll/:dxdx=%(1-2x+x2)
Ll .l:l xdxdx:-z-(2-5x+x3) > (B3)
Gx=fx1£x2dxdx=i];2(3-hx+xu)

A

By
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If the blade loading for the perfectly flexible
blade 1s assumed equal to that of the rigld blade the
fictitious moment existing In the blade 1s

e+éap_2.._l§&
2 YRQ2

Mf=§].:l 6 -

9R (1 + x)2@
] -~y + ialuz + 3N
+ |-a; - sin ¢
(1 + x)2
by + Eb1p2
+ |by - = cos Y (B4)
1 (s 2

The numerlcal values of My and M, can then be

combined to give the actual blade bending moment according
to equation (Bl).

In reference 9 Hohenemser developed the following
formula for the moment in a blade that has a uniform
distribution of both blade maess and blade bending
stiffness:

MI'
M= 5 (B5)
R2P,
1 + 0, 22—
05 EI

in which M, 1s the rligld-blade bending moment and P,
1s the centrifugal tenslon at the flapping hlnge.

For a blade of uniform mass distribution,
Py = %mﬁ292

Substitutlon of the value for P, in equation (B5)
reduces thils equation to

_ Mn
1 + 0,052K
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in which
o e e e mgliQ2

E= 2EI

Numerical Examples
The bending moments in the same blade and for the
same operating conditions as were considered in appendix A
are calculated by both Clerva's and Hohenemser's method
for x = 0.6 and ¥y = 120° and 3000,

‘When the baslec data from appendlx A are substltuted
in equation (B2) the following result is obtained:
M, = 192,000[(0.17500x - 0.1410B, + 0.00651A,)
- (0.0970C, - 0.1050B, + 0.0215Ax) sin ¥

+ (0.0298cx - 0.023LB; + 0.00067Ax) cos @] (B6)

For x = 0.6, equations (B3) give

Ax = 0.0800
By = 0.0693
Cx = 0.0608

Substltution of- these values of Ay, By, and Cx in

equation (B6) gives the following expression for the
rigid-blade moment at x = 0.6:

Mp = 265 - 65 8in ¥ + L8 cos ¥

The perfectly flexlible blade bending moment 1is
obtained from equation (B}) and is

M = 512 [0.1750 i _0_19&.] . [-0.0970 ; _0_&1]1 v

(1+x)2 (1+x)2

+ [0.0298 - —O—'EZ'-B—Jcos i
(1 + x)2
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At x = 0.6,
Mg = 50.7 - 17.4 siny + 8.9 cos ¥

At ¢ = 120° (the approximate position for minimum bending
moment) ,

M, = 265 - 56 - 24 = 185 pound-feet
My = 50.7 - 15.1 - L.} = 31.2 pound-feet
Therefore, the Clerva method (see equation (Bl))

gives fgr the bending moment M at the azlmuth posltlion
v = 1209,

M= 185 x 31.2 - 26.7 pound-feet
135 + 31

Similarly, the Clerva methcd glves for ¥ = 500o
M = 58.l. pound-feet
When Hohenemser's methkod 1s used, at WV = 1209,

1
1 + (0.052 x 12).8)

M = 185 x 2lie7 pound-feet

and similerly, st ¥ = 3000,

1

M = 345 x L16.0 pound-feet

1+ (0.052 x 124.8)
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C1ps C2ps C3p
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APPENDIX C
-~ ~ .- . SYMBOLS

dimensionless coefficient (EI/QB?R2320%> '
slope of 11ft curve

constant term in Fourler serles that
expresses f

coefficient of cos Y in expression for g
coefficient of sin ¥ 1n expression for §p

tip-loss factor (blade elements outboard of
radius BR are assumed to have no 1lift)

coeffliclents In equations for y;, y», and V3
blade chord (constant)

flexural stiffness of blade

acceleration due to gravity

mass moment of inertis of one rotor blade
about horilzontal hinge

dimensionless coefficient (mBuRLlﬂZ/ZEI)
aerodynamlic 11ft on blade element at radius r
bending moment 1n blade at radius r

moments corresponding to the deflectlon
functlons y,, yo, and y5

flexible~-blade bending moment as defined 1n
eppendix B

bending moment in blade at radius r (blade
assumed to be a rigid body)

wolght moment of blade ebout horlzontal
hinge
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NACA ARR No. L5SE23
mass of blade per unlt length between
hinge and radius BR
an arbitrary Integer

any lnteger greater than zero end less than
or equal to n

tension in blade at radius r
tenslon in blade at horizontal hinge

mass of blade tlp between radius BER snd
radius R

blade radius

diastence from center of rotation te center
of gravity of mass Q

radlus of blade element

shear In the blade st radius »r

time

veloclty component at blade element perpen-
diculer to blade span exls and parallel
to rotor disk

velocity comporent at blede elemsnt perpen-
dicular both to blade span and to TUp

ratlo of blade-element radius to ®R

deflectlion of blade element at radius r,
referred to rilgld-blade pocsitlon

deflectlieon functlons entering lnto the
gensral equation for ¥y

blade flapning angle
angle between plane peroendicular to axis of

rotatlon and llne connecting horlzontal
hinge with blade element at radius r
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d

- — - —

slope of tangent to blade at redius r,
referred to plane perpendicular to axls
of rotation ' "=

blade azimuth angle, messured in direction
of rotetion from down-wind position

blade pltch angle
angular velocity of rotor

ratlo of component of forward speed 1n plane
pervendlcular to axils of rotation to (R

ratio of axial inflow velccity through rctor
to QR

mass constant of rotor blade <%Q%§&
1

air denslty
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Bending moment, Ib-ft
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Figs., 4,5 : NACA ARR No. L5E23
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Plane of rotor disk
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Figure 4.— Geometry of deflected blade .
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Figure 5.~ Forces acting on a blade element in plane of flapping.
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